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INTRODUCTION

IT IS WIDELY ACCEPTED that porosity and material archi-
tecture are highly relevant to the mechanical behavior

of porous materials,1–3 such as tissue engineering scaf-
folds. These porous materials usually have structural (or
architectural) anisotropy that is related directly to the me-
chanical and functional anisotropies.4–7 Much effort has
been undertaken to formulate the relationship between ar-
chitecture and mechanics to predict mechanical (elastic)
anisotropy from structural anisotropy.8–17 A successful
formulation, in conjunction with other parameters, would
enable prediction of the mechanical and physical proper-
ties of porous materials and tailor these materials to meet
certain criteria for designer materials. It has been recog-
nized that the structural integrity, mechanical influence,
and physical properties are important factors regulating
the cellular response in the scaffold.18,19 In addition,
knowledge of the structural anisotropy in advance from
material images can facilitate experimental tests to deter-
mine the independent material constants needed for the

macroscopic stress–strain relationships. Moreover, me-
chanical or physical properties (e.g., the elastic constants,
tortuosity or permeability) of the porous media can be pre-
dicted along the principal directions of material images.
In this study, we develop a method to assess the structural
anisotropy of tissue engineering scaffolds, which usually
have interconnected channel-shaped pores rather than iso-
lated cavities to guide cell growth and proliferation in
three dimensions. One of the challenging issues in devel-
oping such a quantification technique is the complex mi-
crostructural topologies of biomaterial scaffolds. More-
over, comparisons to the prediction of structural
anisotropy with other methods, which have been tradi-
tionally used for characterizing trabecular bone architec-
tures, are also discussed in the study.

The characterization of structural anisotropy (or mate-
rial orientation) in porous media has largely relied on de-
riving global measurement of intercept segments (as a di-
rectional parameter), which occur at the intersection of
test lines and the boundary of material phase. Several
mathematical constructs based on the intercept segment
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have been provided in the literature for the measurement
of a directional parameter, which can be used to evalu-
ate the type and degree of structural anisotropy for porous
media such as trabecular bone architectures.8,16,20,21 The
directional parameter is typically plotted in polar coordi-
nates with respect to test lines in various angles, and the
resulting curve is called a rose diagram (RD). The mate-
rial is isotropic if the best fit to the diagram is a sphere
(or a circle for a two-dimensional (2D) material image),
and the material is anisotropic if the diagram differs from
a sphere. Practically, no material is completely aniso-
tropic; therefore, for the purpose of engineering analy-
ses, a material is assumed to be orthotropic at most (not
fully anisotropic, i.e., no shear deformation would occur
if the material is subjected to normal deformation in a
principal direction).22 In the orthotropic case,1 material
properties differ macroscopically in three mutually per-
pendicular directions (i.e., has three mutually perpendic-
ular planes of material symmetry), and the best fit to the
RD should be an ellipsoid. The directions of these fit axes
are principal directions. The ratio of the length of major
to minor principal axes in the ellipsoid, defined as the
degree of anisotropy (DA), expresses the departure from
isotropy and can be correlated to the disorders of bio-
logical functions.6 If the RD is a spheroid, then the
medium is transversely isotropic and has a rotational
symmetry with respect to one of the principal axes (i.e.,
has symmetry properties in the plane normal to that prin-
cipal axis). More importantly, through the decomposition
of the principal axes of the ellipsoid to eigenvalue–eigen-
vector pairs, one can correlate the structural anisotropy
and the mechanical anisotropy to obtain those elastic
properties needed for stress analysis.15

In this article a new method, named intercept seg-
ment deviation (ISD), is proposed to define the di-
rectional parameter for characterization of the struc-
tural anisotropy of highly interconnected tubular
porous media with extensive surface area, such as tis-
sue engineering scaffolds. The ISD method measures
the standard deviation of intercept segments length,
with respect to test lines in various angles, as the di-
rectional parameter. Conceptually, this directional
parameter gives the degree of variability within the
intercept segments about their mean intercept length
and differentiates the material orientation from an
idealized average material orientation. This new
method is validated through the comparison of struc-
tural anisotropy from its measurements to mechani-
cal anisotropy from finite element stress analysis
(FEA). A generated 2D image of a two-phase mate-
rial and a real three-dimensional (3D) image of a tis-
sue scaffold are used to illustrate the comparisons
over other methods. Also, the effects of porosity, in-
dividual phase geometry, and properties on the ori-
entation of general two-phase materials have been
systematically explored.
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METHOD

Quantification of structural anisotropy

By applying a parallel array of test lines to a porous
material image at angle �, intercepted line segments will
arise at the intersection of the test lines with the bound-
ary of the matrix phase. For example, a 2D material im-
age having two phases (matrix and pores) is shown in
Fig. 1. The intercept (fabric) length has been identified
as a directional parameter of relevance to the structural
anisotropy of the material, and several different meth-
ods to derive this parameter have been proposed for
characterizing the structural anisotropy of the porous
material.

The mean intercept length (MIL) method, developed
early in 1945,23 has been applied to quantify the direc-
tional parameter for the anisotropy of trabecular networks
in bones.21,25 The definition of MIL may be expressed
as follows9:

MIL(�) � (1)

where Ii(�) corresponds to the intercept length of the ith
line segment measured along the test lines drawn in the
� direction, and N(�) represents the number of all the
randomly intercepted segments in that direction. Mea-
suring the MIL along test lines and drawing them in 
a polar plot with respect to � results in a RD. The total

intercept length, �
N(�)

i�1
Ii(�) in Eq. (1), for all the directions

remains a constant and physically is proportional to the
volume–surface ratio of pores dispersed in a matrix.24

Therefore, N(�) is the only variable in Eq. (1). If a
sphere/isotropic phase interface exists, it is possible to
obtain a spherical RD for an actually orthotropic medium
(i.e., anisotropic structures with isotropy at the surface
do exist26,27). Consequently, this method determines the
orientation of the interface rather than of the material it-
self, although these are often well related.

Several subsequent methods have been developed
based on this “intercept length” concept for quantifying
the structural anisotropy for trabecular architectures to
overcome the potential problem associated with the 
MIL method, for example, the star volume distribution
(SVD8), the star length distribution (SLD15), and the
line fraction deviation (LFD20) methods. The SVD is a
volume-based method and is evaluated using an array
of parallel test lines as a function of each direction in
space as:
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The SLD method is similar to SVD, but lightly weights
the fabric intercepts in calculating the anisotropy in
porous media and is expressed as:

SLD(�) �
(3)

A point grid algorithm for calculating the SVD and SLD
was also presented in the literature,16 in which it was con-
cluded that these methods provide marginally better pre-
dictions of the mechanical anisotropy directions of can-
cellous bone than the MIL method.

Besides the methods listed above, the LFD method was
developed and compared with MIL for measuring orien-
tation of trabecular bone structures.20 It was shown that
the LFD method, which determines the standard devia-
tion of the fraction of the intercept length under an indi-
vidual test line in the � direction, is more sensitive to an-
isotropy than the MIL technique. To the best of our

�
N(�)

i�1
I i

2 (�)
��

�
N(�)

i�1
Ii(�)

STRUCTURAL ANISOTROPY IN POROUS MEDIA

knowledge, no explicit formulation in stereological terms
is available in the literature. Therefore, we present a math-
ematical expression for the LFD method according to our
understanding of the original notion in the literature as:

LFD(�) ��� (4)

where M(�) is the number of total test lines in the di-
rection �, and Jj(�) corresponds to the fraction of the in-
tercept lengths for the jth test line. J(�) is the mean value
of Jj(�)’s with respect to M(�):

J�(�) � (5)

We propose a new approach called the ISD method,
unlike the LFD method, which takes into account the de-
viation of each intercept segment from the mean value
of total segment lengths in a test line direction, and is de-
fined as:

ISD(�) �             �� (6)

and

I�(�) � �� (7)

Mathematically, this method better reflects the degree
of variability within the intercept segments than the LFD
method and, physically, gives the variation of phase 
interface from an idealized sphere/isotropic phase in-
terface.

In this study, two images were analyzed using the MIL,
SVD, SLD, LFD, and ISD methods. The resulting RDs
were compared with the mechanically determined anisot-
ropy (which will be discussed later). One of the images
is a generated 2D microstructure from a phase separation
of polymer blends described by the Cahn-Hilliard-Cook
model, which is an equation for phase separation.28,29 In
this 2D material image, one of the material phases is set
to mimic pores and the porosity is 0.5. Another image to
be examined is a 3D representation of the microstructure
from x-ray tomography of a tissue scaffold with a poros-
ity of 0.45. A rotating pixel and coordinate transforma-
tion scheme, where each pixel in the test region (e.g., Fig.
1a) was locally rotated to the test line direction, was
adopted as suggested in the literature to facilitate the ac-
curate measurement of the directional parameter.20 Also,
it is worthwhile to note that in order to avoid an orienta-
tion preference, we took a circular or spherical test region
during the evaluation of the directional parameter (Fig.
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FIG. 1. Illustration of the measurement of intercept length in
direction � for characterizing the structural anisotropy of a gen-
erated 2D image, a circle test region was chosen for the mea-
surement (a); a square test image was chosen and a uniform de-
formation is applied along the direction � for the measurement
of mechanical anisotropy (b).

a

b



1a). This keeps the porosity constant through the calcula-
tion of the parameter in all the orientations concerned. In
addition to the specific 2D and 3D cases shown in Figs.
1 and 2, we also applied the ISD method to different 3D
digital images of scaffolds with porosities ranging from
ca. 0.3 to 0.55, to demonstrate the universality of the new
methodology in characterizing the material anisotropy.

Quantification of mechanical anisotropy

A major requirement for the relationship between struc-
ture and mechanics should be the ability to predict me-
chanical anisotropy from architectural anisotropy. There-
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fore, numerical simulations of the elastic mechanical tests
of porous media, using large-scale finite element models
generated from the 2D and 3D images, have been per-
formed to validate the aforementioned methods for quan-
tifying the structural anisotropy. In order to obtain the de-
pendency of the elastic properties on the test direction,
square and cubic test regions at each particular test di-
rection (�) were chosen from the original 2D (for exam-
ple, see Fig. 1b) and 3D images, respectively. By taking
the test region for different angles and applying various
mechanical constraints and virtual deformation along the
angles, an elastic modulus as a function of test direction
can be constructed (a RD for mechanical anisotropy).
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FIG. 2. View of the porous phase of a real 3D porous medium (a); 3D finite element model for the measurement of mechan-
ical anisotropy (b). (Color images are available at �www.liebertpub.com/ten�.)



The commercial finite element program, ABAQUS,30

was used to simulate the mechanical test. The porous ma-
terial was modeled as a two-phase material system in the
finite element analysis based on the configurations shown
in Figs. 1b and 2. The matrix phase of the porous media
was assumed to be a homogeneous, isotropic, and linear
elastic continuum. In 2D analysis, a plane stress condition
was adopted. Finite element meshes were generated using
four-node and three-node isoparametric continuum ele-
ments provided by the program. In 3D analyses, finite el-
ement meshes were automatically generated using a voxel-
based scheme developed in our lab. This scheme converts
a high-resolution image into meshes with hexahedral ele-
ments. All elements in these meshes are identical and have
the same dimensions as the voxels in the image. Millions
of degrees of freedom are contained in the micro-finite el-
ement model for the material image studied here.

RESULTS AND DISCUSSION

To assess the aforementioned methods on the accuracy
of predicted structural anisotropy, we first performed fi-
nite element analyses to establish the mechanical anisot-
ropy for the 2D and 3D porous images in Figs. 1 and 2,
respectively. For the 2D image, the dotted line in Fig. 3a
is the best elliptical fit to the RD of the modulus as a
function of test direction. This elliptical fit implies that
the two-phase material studied is orthotropic, having
three mutually perpendicular planes of material symme-
try. The directions of these fit axes are principal direc-
tions (i.e., no shear deformation would occur if the ma-
terial is subjected to normal deformation in a principal
direction). For the purpose of illustration, the RD of the
mechanical anisotropy of the 3D image was decomposed
into three independent RDs in the planes with respect to
the original reference coordinates of the image in Fig. 2.
It was found that the principal axes for the 3D image
were nearly identical to the original reference axes (x, y,
and z). This is also why the longest axes of those three
decomposed RDs (Fig. 3b) lie near 0° or 90°.

For the finite element analysis of mechanical response,
the test region rotated with the test direction � (i.e., Fig. 2).
As a result, the porosity of the image in each square test
region could be different due to the random distribution of
the pores in the material image. Because the mechanical re-
sponse would be affected not only by the microstructure
but also the porosity, it was worthwhile to examine the vari-
ation of the porosity in the test region as a function of the
test direction. The result in Fig. 4 indicates that the devia-
tion from the original porosity (� 0.5) is minimal, and one
can conclude that the resulting change in the elastic mod-
ulus shown in Fig. 3 is solely attributed to the microstruc-
tural change in the test direction rather than the porosity.

For a more general two-phase material case, the ef-
fect of the stiffness ratio on the type and degree of me-
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chanical anisotropy has been examined. The stiffness
ratio is defined as E1/E2, where E1 and E2 are the elas-
tic moduli of the phase 1 and phase 2 materials, re-
spectively. For each test direction, mechanical tests
have been performed with the stiffness ratio varying
from 1 to 104, and the 2D image in Fig. 1 has been used
for the mechanical test due to simplicity. Subsequently,
RDs from the mechanical tests as a function of the stiff-
ness ratio can be constructed. It is found that all the RDs
have a reasonably good elliptic fit and their principal
directions, as expected, remain unchanged, while the
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FIG. 3. Rose diagrams obtained from the normalized modu-
lus as a function of test direction for images shown in Fig. 2.
A rose diagram for the 2D image (a); decomposed rose dia-
grams for the 3D image (b).



stiffness of the materials in the phases 1 and 2 changes
(Fig. 5). However, the mechanical DA is affected, which
increases with the increase of the stiffness ratio and
tends to be a determining value when the material has
two strong-contrast phases (e.g., E2 approaches zero,
which corresponds to pores). The results in Fig. 5 indi-
cate that the principal directions of the two-phase ma-
terials, if they exist, are only functions of geometry and
the spatial arrangement (microstructure) of the two
phases. Conversely, the mechanical DA of the two-
phase material is dependent not only on the mi-
crostructure, but also on the stiffness ratio of the con-
stituents. In tissue engineering scaffolds, this implies
that the existence of regenerated tissue (or cells) in
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pores does not alter the anisotropy of the scaffold, but
relative rigidity between the scaffold material and the
regenerated tissue may alter the DA of the scaffold.
Practically, the rigidity of scaffold material is much
more than that of the regenerated tissue, so the me-
chanical DA of the scaffold with filled regenerated tis-
sues should be the same because it is an unfilled porous
medium. Also, the tissue growth into a porous scaffold
would represent a tri-phase material. The aforemen-
tioned statements should be adequate because the pores
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FIG. 4. The variation of matrix concentration with rotation
angle of test images for 2D and 3D porous media.

FIG. 5. The mechanical DA and principal direction as a func-
tion of constituent properties of 2D image shown in Fig. 1.

FIG. 6. Comparisons of rose diagrams obtained from differ-
ent methods with that obtained from FEA for a 2D porous
medium shown in Fig. 1.



and materials grown in the pores can be treated, to-
gether, as an effective one-phase material since they are
soft matters.

Fig. 6 presents the RDs for structural anisotropy ob-
tained from the MIL, SVD, SLD, LFD, and newly de-
veloped ISD methods for the 2D image in Fig. 1. Also,
for comparison, shown in the figure is the RD for the me-
chanical anisotropy obtained from the finite element anal-
ysis. Based on the similarity of the structural and the me-
chanical RDs, one can assume that the proposed ISD
method has greater sensitivity to the material orientations
than the other methods studied and can well predict the
principal mechanical directions. Also, the RD obtained
from the ISD method can attain a best elliptic fit (Fig.
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6), which indicates that the material images are consid-
ered to be orthotropic. In addition, this result supports the
assumption that the mechanical orientations are aligned
with the fabric orientations.

Fig. 7 gives the comparison between the projected
RDs, in three orthogonal planes, obtained from the FEA
and the proposed ISD method for the 3D image in Fig.
2. The 3D RDs of FEA and ISD method are spheroids
(not shown here), which result in ellipses identical in
shape after the projection (Figs 7a and 7c). This indicates
that the image in Fig. 2 macroscopically behaves as trans-
versely isotropic material, which has a rotational sym-
metry with respect to the z axes. This information reveals
that only five independent material constants need to be

FIG. 7. Comparisons of decomposed rose diagrams obtained
from ISD method and FEA for 3D image shown in Fig. 2 in 
y-z plan (a), x-z plan (b) and x-y plan (c).



determined for the stress–strain relations in coordinates
aligned with principal directions. For the purpose of clar-
ity, the RDs obtained from other methods are not shown
here. Overall, the results in Figs. 6 and 7 indicate that the
ISD method gives accurate predictions in characterizing
the structural anisotropy.

In order to examine the relationship of the pore shape
and size to the structural anisotropy, one can keep the pore
architecture constant (pore shape and connectivity) while
changing the pore size (consequently, changing the poros-
ity). The images in Fig. 8 were produced based on the im-
age in Fig. 1 (porosity � 0.5) by either expanding or con-
tracting the matrix–pore interface uniformly. This also
mimics an ideal reality in tissue engineering where the tis-
sue regeneration and scaffold degradation take place si-
multaneously. For example, Fig. 8a can represent a struc-
ture starting from the scaffold alone (matrix volume
fraction � 0.6, porosity � 0.4), to a composite structure
of degrading scaffold and regenerating tissue (matrix vol-
ume fraction � 0.5 to 0.2; i.e., Fig. 8b–e), to almost re-
generated tissue (matrix volume fraction � 0.1; i.e., Fig.
8f). Some of the RDs obtained from the ISD measurement
corresponding to these microstructures are depicted in Fig.
9. The result in the figure indicates that initially, the shape
and the orientation of those RDs remain basically un-
changed, and a best fit of ellipse for each diagram can be
found. This suggests that the type of anisotropy of the
structure remains orthotropic during the processes of ma-
trix contraction (i.e., scaffold degradation) or pore ex-
pansion (i.e., tissue regeneration). Also, the diagram ap-
proaches a circle when the scaffold concentration reduces
to 0.1.

Fig. 10 shows the principal direction and the structural
DA as a function of matrix volume fraction. During the
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degradation of matrix volume fraction from 0.6 to 0.2,
the principal direction and the DA are roughly indepen-
dent of the porosity while the shape and arrangement of
the pore architecture remain unchanged. This result
shows that the porosity and architectural orientation are
independent parameters for quantitatively describing the
mechanical and physical properties of porous media. For
the further matrix degradation in Fig. 10 (i.e., the matrix
volume fraction from 0.2 to 0), the DA tends to be 1.0,
because the structure approaches isotropy. Also, at this
stage, the RD is close to a circle, and consequently, the
principal direction becomes singular (no preference of the
material orientation).

Fig. 11 gives the variation of the DA obtained using
the ISD and MIL methods on the images of the porous
engineering scaffold. Each datum in the figure corre-
sponds to a mean value of DAs obtained from analyzing
4 to 6 cubic portions of the entire specimen. These cu-
bic images were collected from different locations within
the same specimen. It should be noted that regardless of
the positions where these 3D sample cubes were taken,
the porosity was essentially constant (the variation in
porosity was less than 1%). This was done to keep the
porosity constant, whereas the microstructure was vari-
ous. From the value of the error bars in Fig. 11, which
is the standard deviation, one can see that the DA does
not change significantly for the images from the same
specimen (i.e., the same porosity). This is because each
specimen can be treated as macroscopically homogenous.
Also, for this engineering scaffold, the DA obtained from
both methods reaches its highest value at a porosity of
approximately 45%. There is a discrepancy between the
DAs evaluated from the ISD and MIL methods. In the
case of the ISD method, when the porosity becomes ei-
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FIG. 8. 2D image with different matrix concentration while maintaining matrix shape unchanged (white: pore; black: matrix).



ther lower or higher than 45%, the DA tends towards to
unity. This agrees with the physical situation because the
material becomes more isotropic (i.e., a one-phase ma-
terial). However, the DAs analyzed using the MIL
method, which has been widely used to quantify the an-
isotropy of trabecular networks in bones, do not agree
with the physical situation for the engineering scaffold
studied. In conjunction with the results in Fig. 5 (the in-
dependence of the principal direction on the stiffness ra-
tio), Fig. 9, and Fig. 10, the result in Fig. 11 suggests
that the proposed ISD method can be extended to any
general two-phase materials for quantifying the direc-
tional parameter.
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CONCLUSION

In this study, we have developed a new fabric-based
scheme called the intercept segment deviation (ISD)
method, which takes into account the local variation of
the orientation, to quantify the directional parameter
that characterizes the structural anisotropy of highly
porous medium with complex microstructural topolo-
gies. The structural anisotropy calculated from this
method agrees well with the actual mechanical anisot-
ropy and performs better than any of the other meth-
ods studied. The study has presented the interrelation-
ship of the geometry, spatial arrangement, and
individual constituent properties on the macroscopic
mechanical response of the two-phase materials. Also,
we conclude that the concentration and structural an-
isotropy are two independent microstructural factors of
relevance to the mechanical properties of two-phase
materials, although the mechanical properties might be
more related to the concentration. In addition, the de-
gree of anisotropy obtained using the directional pa-
rameter from image analysis is only good for porous
media or media with strong-contrast phases. The results
presented here can facilitate the optimal design and fab-
rication of scaffold used in medicine and in tissue en-
gineering. Finally, although the current study is based
on use of a restricted set of microstructure images, the
method can be extended to any general two-phase ma-
terials.
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